IA : TambaCellule : MathématiquesDépartement : KOUMPENTOUMClasse : Terminale LAnnée Scolaire : 2022/2023Durée : 2h

DEVOIR DEPARTEMENTAL DE MATHEMATIQUES N°2

EXERCICE N°1

(10 points)

Le tableau ci-dessous donne les résultats d'une enquête portant sur la consommation moyenne bimestrielle en eau (en m 3) de 6 familles notée *Y*, en fonction de la taille *X* des familles (nombre de personnes constituant une famille).

X_i	2	3	5	6	8
Y_i	11,5	19,5	30	39	44

1.	Représenter le nuage d	de points de la série $(X,$	() dans un repère ortho	gonal (O; i, j).	(1pt)
	representer to maage t	se points de la selle (11)) dans an repere or mo	5011a1 (O, 1, j).	(-1

2. Calculer les moyennes
$$\bar{X}$$
 et \bar{Y} , puis placer le point moyen G du nuage de points. (1,5 pt)

3. Calculer
$$Cov(X,Y)$$
, $Var(X)$ et $Var(Y)$. (3pt)

4. Calculer le coefficient de corrélation de linéaire
$$r$$
. Puis interpréter le résultat. $(1,5pt)$

5. Déterminer une équation de la droite (D) de régression de
$$Y$$
 en X · (1 pt)

6. Représenter (D) dans le repère
$$(O; \vec{i}, \vec{j})$$
. (1pt)

7. Estimer la consommation moyenne bimestrielle en eau d'une famille de 15 membres. (1pt)

Pour le reste du sujet l'élève choisit un seul exercice entre l'exercice 2 et l'exercice 3.

EXERCICE N°2

(10 points)

Soit la fonction f définie par : $f(x) = \frac{x^2}{x^2 + 2x - 3}$. (C_f) sa courbe représentative dans un repère orthonormé $(0, \vec{1}, \vec{j})$.

1. Montrer que le domaine de définition de
$$f$$
, $D_f = \mathbb{R} \setminus \{-3, 1\}$. (1,5 pt)

2. Déterminer les limites de
$$f$$
 aux bornes de D_f . (3 pt)

3. Préciser les asymptotes à la courbe
$$(C_f)$$
 de f . $(1pt)$

4. Montrer que la fonction dérivée
$$f'$$
 de f est definie par : $f'(x) = \frac{2x^2 - 6x}{(x^2 + 2x - 3)^2}$. (1,5 pt)

5. Déterminer le signe de
$$f'(x)$$
 sur D_f puis dresser le tableau de variation de f . (1pt)

6. Calculer
$$f(0)$$
 puis interpréter le résultat. (1 pt)

7. Tracer les asymptotes et la courbe
$$(C_f)$$
 de f dans le repère. $(1pt)$

EXERCICE N°3

(10 points)

- 1. Soit $K(x) = x^2 + 3x 4$
 - a. Résoudre dans \mathbb{R} l'équation K(x) = 0. (1pt)
 - b. En déduire une factorisation de K(x). (1pt)
- 2. Soit $P(x) = x^3 6x^2 + 11x 6$
 - a. Montrer que 1 est une racine de P. (1pt)
 - b. Factoriser complètement P(x). (1pt)
 - c. Résoudre dans \mathbb{R} les équations suivantes :

$$P(x) = 0 ag{0.5pt}$$

$$P(4x - 1) = 0 (0.5pt)$$

$$P(x) = -6 \tag{0.5pt}$$

$$P(x) = (x-1) \tag{0.5pt}$$

- 3. On pose $F(x) = \frac{(x-1)(x-2)(x-3)}{K(x)}$.
 - a. Déterminer l'ensemble de définition de F, D_F . (1pt)
 - b. Simplifier $F \operatorname{sur} D_F$. (1pt)
 - c. Résoudre dans \mathbb{R} l'équation F(x) = 0 et l'inéquation $F(x) \le 0$. (1pt + 1pt)

Bonne Chance!